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Preface

The almost 300 year history of the calculus of variations involves the names
of many outstanding mathematicians of the past. The subject has been treated in
a number of excellent monographs. The foundations of this science seemed to be
firmly established and subject to no revision. However, this proved to be not quite
S0.

About 40 years ago there emerged a new science, optimal control theory, which
deals with more compicated problems than those in the calculus of variations. The
new ideas and methods of optimal control provided us with a new outlook on its
predecessor, the calculus of variations. This was one of the stimulating reasons for
the authors to write this book.

Like the majority of treatises on the calculus of variations and optimal control,
our book begins with formulating the problem and determining the class of varia-
tions to be considered in the subsequent theory. The key concept in our setup is that
of a control system. The principal type of control variations are spiky variations,
i.e., variations that take nonnegligible values on a set of small measure.

These variations lead to the notion of minimum that is stronger than a weak
minimum usually considered in the calculus of variations; we refer to it as a Pon-
tryagin minimum. Both concepts, the control system and Pontryagin minimum,
originate from optimal control. Their formulation is fairly simple and requires no
preliminary knowledge.

We specify a class of problems, related to an arbitrary control system, whose
properties are similar to those of problems in the calculus of variations. We refer
to these problems as problems of the calculus of variations, although formally they
are more general and allow us to illustrate theoretical developments by examples
from optimal control.

We explore the interaction between the ideas of the calculus of variations and
optimal control within the framework of this class of problems. The fundamental
concepts of the calculus of variations such as an extremal, a field of extremals,
the second variation of a functional, quadratic conditions, are related to a weak
minimum. We study how these concepts transform when we apply them to a
Pontryagin minimum and develop the theory of Pontryagin minimum for problems
of the calculus of variations. It turns out that a Pontryagin minimum allows us to
construct a deeper and more natural theory than a weak minimum. In particular, it
requires weaker smoothness assumptions. Moreover, this theory is self-consistent,
and we dare to recommend our book as an introduction to the calculus of variations.
On the other hand, the book provides a good introduction to optimal control.

The book is accessible to graduate students in mathematics and can be rec-
ommended to all of those who use extremum theory in their research or applied
studies. We hope that it will be of interest to mathematicians working in extremum

~i



xii PREFACE

theory due to the novelty of material and the possibility to extend the results to
a wider variety of problems. Moreover, the book can be used for teaching courses
in the calculus of variations and optimal control. In fact, its first version emerged
from such courses taught by the authors at Moscow State University in the 1980s.

We are thankful to V. M. Tikhomirov and S. I. Gelfand who suggested that
we write the book and assisted in accomplishing this task. We are grateful to the
American Mathematical Society for the publication of our book. We express our
gratitude to D. M. Chibisov who translated the book into English. The authors
thank the G. Soros Cultural Initiative Foundation and the Russian Foundation for
Fundamental Research for substantial financial support.

A. A. Milyutin
N. P. Osmolovskii



Introduction

In this book we consider a class of optimal control problems whose characteristic
features are a simple and convenient form of constraints, the presence of a control
system, as well as the fact that we do not deal with the type of constraints that
require the control to belong to a closed set. Although this class of problems does
not fit into the framework of the calculus of variations, it can be restated in the
general form of a calculus of variations problem. This allows us to use the ideas
of both the calculus of variations and optimal control to the study of this class.
Among similar classes the one we consider is the most general.

It is well known that basic concepts of the calculus of variations are related to
the type of minimum which is usually referred to as a weak minimum, while optimal
control theory deals with a stronger type of minimum, which we call a Pontryagin
minimum. In the book we develop the theory of Pontryagin minimum for the class
of problems under consideration. This theory involves the concepts and approaches
similar to those in the theory of weak minimum in the calculus of variations having
at the same time certain advantages over the latter. Actually we set out a new
calculus corresponding to the new type of minimum, which employs the notions of
the Hamiltonian and quadratic form different from those in the classical calculus
of variations. These notions take their origin in optimal control theory.

Our approach to the theory of Pontryagin minimum is based on the blend
of ideas of the calculus of variations and optimal control. Owing to this original
approach, practically all the material of the book is new.

We hope that our approach will contribute to both the calculus of variations
and optimal control theory.

For better intuitive understanding of the “physical” nature of mathematical
concepts, the reader not familiar with the subject may need more examples, illus-
trations and explanations. We did not include such introductory material into this
book, because it is well presented in many courses on the calculus of variations and
optimal control (see, e.g., [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 17, 18, 20, 21, 23,
24, 27, 31, 32, 33]). Otherwise the book is self-contained, and we do not assume
the reader to have any preliminary knowledge in this area.

Now we describe the class of problems to be dealt with and give a definition of
Pontryagin minimum.

We consider the problems which can be reduced to the following form:

J(zo,t0;21,11) — min,
(1) F(zg,to;z1,t1) <0, K(zo,to;x1,t1) =0,
(2) &= f(z,u,t),
(3) (z,u,t) € Q,
4) g(z,u,t) =0.

1



2 INTRODUCTION

Here Q is an open set in the space of triples (x,w,t). The functions f and g are
defined on @ and are smooth functions of their arguments. The functions x(¢),
u(t) are defined on the interval [tp,¢1]; «(¢) is absolutely continuous and w(t) is
measurable.

Condition (3) is to be understood in the following sense: there exists a compact
set M C @ such that the inclusion

(x(t)7u(t)7t) e M

holds almost everywhere on [to, ¢4].

Further, we put z9 = z(tp), 1 = z(t1) and let J, I, K be smooth functions
defined on an open set.

Moreover, we require that

rank g/, (z,u, t) = d(g) for all (x,u,t) € Q such that g(z,u,t) =0,

where d(£) denotes the number of components of vector €.

The problem (1)—(4) is somewhat more general than, for example, problems
treated by Bliss in the second part of his book [9], since he does not consider
inequality constraints I’ < 0.

The problem (1)—(4) resembles the Mayer problem, differing from it by condi-
tion (3). Introducing the set @ into consideration proved to be very useful. It is
done following optimal control theory, where it was introduced by A. Ya. Dubovit-
skii.

The variables xq, tg, x1, t1 are called the endpoint variables, = is the state
variable, and w is the control. This terminology as well as the notation ¢ for the
independent variable interpreted as time follows optimal control theory.

We believe that the problem (1)—(4) is suitable for the use as a canonical
problem.

The study of the problem (1)—(4) is carried in two stages. First we thoroughly
treat the problem obtained from (1)—(4) by omitting the requirement (4). In other
words, we study in detail the problem (1)—(3). The second stage consists in reduc-
ing the problem (1)—(4) to (1)—(3). This enables us to considerably simplify the
presentation. The following discussion concerns the problem (1)—(3).

As was pointed out, we study Pontryagin minimum, i.e., we treat the problem
(1)—~(3) as an optimal control problem. By a Pontryagin minimum we mean the
following. A trajectory

(ft\(t)ﬁj,\( ) ) | te r\07t1
satisfying the constraints (1)—(3) is a Poniryagin minimum point if there is no
sequence of trajectories

(2"(t),u™(t),t) |t € [th. ¢, n=1,2,...,

satisfying the constraints of the problem and such that, as n — oc,
(1) tn — to7 t? — tl;
(i) max(g njqg, 5 127 () — Z(E)| = 0;
(Hl) ftg7tn [t07tA1 |un( ) - ( )| dt — O'
(iv) there exists a compact set M C Q such that for any n
(z"(t),u™(t),t) € M almost everywhere on  [tf, 7],

and, finally,
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(v) for any n we have
J(@m(n), th; 2™ (1), 17) < J(2(to), to; 2(E1), 11).

As is well known, the main necessary condition for a Pontryagin minimum is
Pontryagin’s maximum principle. Hence it is natural that the maximum principle
appears throughout the book and enters virtually every definition. We will present
its proof for the problem (1)—(3) in § 7 of Part 1.

The book is divided into two parts. In the first part we study the questions
arising from the treatment of the control system which determines the problem.
For the problem (1)—(3) the control system consists of equation (2) and condition
(3). For the problem (1)—(4) it consists of equation (2) and conditions (3), (4). The
maximum principle naturally leads to the notions of the Hamiltonian and extremals
of the control system. The relationship between them will be studied in detail.

The Hamiltonian determines the Hamilton—Jacobi equation. We study the
relationship between its solutions and the extremals of the control system and
establish the related sufficient conditions for a strong minimum. These conditions
are new for the classical calculus of variations as well as for optimal control.

Along with the material exposed in terms of the classical calculus of variations
we present some topics in optimal control related to the problem (1)—(3). This is
justified by the fact that the problem (1)—(3), as we pointed out above, is treated
virtually as an optimal control problem. We included a subject from optimal control
concerning the relationship between the trajectories of the control system and those
of its convexification, as well as between the extremals of the control system and
those of its convexification. Moreover, for the control system of the form (2)—(3) we
present the invariance theory of extremals, which was developed in optimal control
by A. A. Milyutin.

We end the first part by describing the technique which is used to reduce the
problem (1)—(4) to the problem (1)—(3). This enables us to carry over all the results
mentioned above to the problem (1)—(4). It is noteworthy that the results do not
depend on the particular realization of this technique. (This technique could be
successfully applied to the material of the second part as well.)

The first part contains analogues of almost everything in the classical calculus of
variations, except for the theorem of E. Noether. This gap could easily be filled, but
we left it out because some important aspects of Noether’s theorem are contained
in the formulation of the maximum principle.

The second part deals with quadratic conditions for a Pontryagin minimum in
the problems (1)—(3) and (1)—(4).

Similarly to the quadratic conditions in the classical calculus of variations,
the quadratic conditions for a Pontryagin minimum presented in the book consist
of necessary and sufficient conditions, with sufficient conditions obtainable from
the necessary ones by their simple and natural strengthening. As in the classical
calculus of variations, the quadratic conditions for a Pontryagin minimum are stated
in terms of quadratic forms; however, they have more complex structure and use
a different interpretation of the Legendre conditions. The quadratic forms become
more complicated because they have to provide for extremals with a discontinuous
control function, the requirement absolutely indispensable for optimal control. The
second part contains the results by Osmolovskii [28—30] on quadratic conditions
in optimal control adapted to the problems (1)—(3) and (1)—(4). As compared to
the general case, these problems allow for a much simpler treatment, retaining
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nevertheless many principal aspects. Therefore the second part may serve as an
introduction to the theory of quadratic conditions in optimal control problems.

By strengthening sufficient quadratic conditions for a Pontryagin minimum
we obtain sufficient conditions for a strong minimum. These conditions have no
analogues in the classical calculus of variations.

In the book we consider many particular problems. Our choice of the prob-
lems was influenced by the following two reasons. First, there are many interesting
problems solved in optimal control, and they are of much richer diversity than the
problems solved in the classical calculus of variations. Second, many optimal control
problems can be reduced to the form (1)—(3) or (1)—(4). Hence almost all prob-
lems are taken from optimal control. The only problem of the classical calculus of
variations which appears throughout the book is the famous isoperimetric problem,
which we consider in various settings and solve by different methods. The prob-
lems allow us to illustrate various effects specific to optimal control theory, such as
sliding and singular mode, and switching, and to demonstrate the techniques used
in analyzing these effects.

Much consideration is given to the time-optimal control problems for linear
systems with constant coefficients. We pay attention to results which have been
known for a long time and became classical, as well as to new results obtained
while working on the book. This class of problems proved to be very appropriate
for demonstration of how the maximum principle is implemented, for showing how
the field theory is used, and for illustration of quadratic conditions for a Pontryagin
minimum. Among the problems considered, there are problems which are by no
means easy and which have not been solved before.

The problems make the reader familiar with the methods used in optimal con-
trol.

The Bibliography contains not only the publications referred to in the book,
but also the most significant works on the calculus of variations and optimal control.

The text and the results of the first part belong to A. A. Milyutin, and those
of the second part are mostly due to N. P. Osmolovskii.
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CHAPTER 1

Theory of a Weak Minimum for the
Problem on a Fixed Time Interval

1. Problems of the calculus of variations

Consider the following problem:

(11) J(ZE()?tO; x17t1)—>min7

(12) F(:Eoﬂfo; :Ehtl) S O7 K(:Eoﬂfo; $17t1) = O7
d

(1.3) d—f = fz, u,1),

(1.4) (z,u,l) € Q.

Here (z(t), u(t),t | t € [to,?1]) is a trajectory satisfying the constraints (1.2)—(1.4).
The function z(t) € R%®) is absolutely continuous on [t,#;]; the function u(t) €
R ") is bounded and measurable on [ty,#1]. Q is an open set in RX®) T4+ The
function f is a sufficiently smooth function defined on Q. For the first part of the
book it will be sufficient to require that f is continuously differentiable with respect
to all its variables. By z¢ and 21 we denote z(4¢) and z(¢1) respectively. The scalar
function J and the vector functions F' € R and K € RUK) are also continuously
differentiable with respect to their arguments.

The notation ¢ for the independent variable is not common for the calculus
of variations; as a rule this variable is denoted by x. We write ¢ because in op-
timal control this is a customary notation for the independent variable, which is
interpreted as time. The functions J, I, K are called endpoint components of the
problem, and xq,to; x1,t; are called endpoint variables.

If the condition K (zq,tq; z1,%1) = 0 uniquely determines the values of ¢y and
t1, the problem is referred to as the problem on « fixed time interval. This is the
most important kind of problem in the calculus of variations in the sense that any
problem in the calculus of variations can be reduced to a problem with fixed time.
Hence we will first obtain necessary conditions for the problem on a fixed time
interval.

The equality (1.3) is assumed to hold almost everywhere. In what follows all
relations containing measurable functions and measurable sets are supposed to hold
up to a set of zero measure.

Finally, the condition (x,u,t) € Q for a trajectory (z(t),u(t),t | t € [to,t1])
means that the closure in R#®)+dwW+1 of jts restriction to a set of full measure in
[to, ¢1] lies entirely in Q.

In optimal control x is usually called the state variable and w is the control. In
a general setup one seeks for the time interval [tq,], the state variable z(¢) and
the control w(t) defined on [tp,¢1]. In a problem on a fixed time interval only the
state variable and the control are to be determined.

7
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2. The problem on a fixed time interval.
Necessary conditions for a weak extremum

Let (z°(¢),u"(¢),t | t € [t§,t7]) be a solution to the problem. We will distin-
guish between two types of minimum: a weak minimum and a Pontryagin minu-
mum. They correspond to two types of variations: weak variations and Pontryagin
variations. Thus we will obtain conditions for a weak minimum and a Pontryagin
minimum respectively. We will assume that the functions

J(zo,to; z1,t1), Flxo,to; z1,t1), K(zo,to; z1,11)

are defined in a neighborhood of the point (x3,t3, z{,¢]), where z§ = 2°(¢3), z{ =
20(19).

In a problem with fixed time, ¢y and #¢; may be viewed as given, and we may
assume that the functions J, F, K do not depend on ¢p and ¢;. In doing so, we
will write simply to, ¢; instead of 3, tJ. The function z°(¢) satisfies the differential
equation, or rather, the system of differential equations

dx

E - f(x7 uo(t)7t)

almost everywhere (a.e.) on [to,t;] with initial conditions z(tg) = z). Since f is

continuously differentiable on Q@ with respect to its variables, these requirements
completely determine z°(¢), i.e., the pair (u°(¢), z3) uniquely specifies 2°(¢).

Let us define a weak neighborhood of a pair (u”(t), 25 | t € [to,t1]). Let p > 0.
We say that a pair (u(t), 20 | t € [to, t1]) belongs to the p-neighborhood of the pair

(u°(t), z§) if and only if the following inequalities hold:

(2.1) esssup |u(t) —u’(t)| < p, |zo—z5| < p.
tE(to,t1]

By definition,

esssup (t) = inf sup (1),

te(to 1] £ teg
where the infimum is taken over all measurable subsets £ of full measure of [to, ¢1]. A
weak neighborhood (in the sense of the calculus of variations) is any p-neighborhood
with p > 0.

This definition agrees with the measurability requirement on w(t) since by the
statement of the problem the values of w(¢) on a set of zero Lebesgue measure are
immaterial.

Since f(-) is continuously differentiable, there exists a p” > 0 such that for
any pair (u(-), zo) lying in the p-neighborhood of (u”(-), z8) there exists a unique
solution of the equation

(2.2) &= f(z,u(t),t)

satisfying the initial condition

(2.3) z(to) = zo.

Therefore, in the p®-neighborhood of (u°(-),z3) the operator

X1 (u(), w0) = w(ts)
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is well defined, where x() satisfies the equation (2.2) and the initial condition (2.3)
on the interval [to,¢4]. Moreover7 the operator X1(u(+),z0) is continuously Frechét
differentiable in the p’-neighborhood of (w’(-),z8). Its Frechét derivative at the
point (u(-),zo) acting on an arbitrary element (@(-),Zo) is given by the formula

X (u(),zo; al-), 7o) = 2(t1),
where the absolutely continuous function z(¢) satisfies on [to,¢1] the equation
(24) z = fi(2(t) u(t), )z + fi,(2(1), (1), £) w(t)
and the initial condition
(2.5) z(to) = Zo.

In a natural way the endpoint functions J, F, K induce the operators .J ﬁ' IA( de-
fined in a pY-neighborhood of (w?(-), z), namely,

j(u )rz0) = J(zo; X1(u(-), z0)),
(2.6) ﬁ(u 7950) = (3607 1(u( )7950))7
K (u(-),z0) = K (20; X1(u(-), z0))

Naturally, the value of Xl( () xo) is close to z{ for sufﬁciently small p° > 0.
Therefore, the operators J F K for sufficiently small p° > 0 are continuously
Frechét dlfferentlable in the p®-neighborhood, and their derivatives are given by
the chain rule. Thus,

f'(u(~),xo; ’(L(-),fo) = J;O (:co;Xl(u(~),xo))£0
+‘];1 (330;X1(1L(~) xo))Xi(u(')ﬂEO; ﬂ(')7i0>>
F' (u(-), 20; a(-),%0) = F, (wo; X1 (u("), o)) 2o

(27) + Fy, (w0 Xa(u(-), w0)) X1 (u(-), o5 (), o),
I?’(u(),mo; a(-), %) = K, (z0; X1(u(-), %0)) Zo
+K:/t1 (:Eo, l(u( )7$0))X1(u(')7x0; ﬂ(')7i’0)‘

Now we are well equipped for obtaining the first-order necessary conditions for a
weak minimum.

Define the notion of a weak minimum. We say that a weak minimum of the
problem (1.1)-(1.4) (on a fixed time interval) is attained on the trajectory

(2 (), u°(t),t | t € [to,t1])

if there is no sequence (u,(t), zoy,) such that

esssup |un () — u’(t)] — 0, |zon — 2] = 0 (n — o0),
tE(to,t1]

(28) Flun()yzon) < J(@’(),2) = J(x3;27),
Fun(), zon) <0, K(un(-),zon) =0 n=12
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The first-order conditions for a weak minimum are expressed in terms of the
Frechét derivatives of the operators j7 ﬁ K at the point (u°(-),z3), i.e., these are
conditions which can be eventually expressed through the first derivatives of the
functions specifying the problem. Of course, we mean necessary conditions. For
obtaining them, we need some additional notions and considerations.

Since d(F') > 1, ie., F' = (F1, Fy, ..., Fypy), we define first of all the notion
of an active inder, which is well known in optimal control theory. An index i €
{1,...,d(F)} is called active if Fj(z3,27) = 0. Denote by I, the set of active
indices. R

Let I' denote the set of vectors 7 representable as ¥ = K'(u°(-), z3; a(-), &),
where %(t) is a bounded measurable function on [tg,¢1]. Obviously, T"is a subspace
of R¥X) | We will first characterize the weak minimum under the “complete image”
assumption, that is, we assume first that I' = R In this case, if we have a weak
minimum at the point (u°(-),3), then the following system of linear conditions is
inconsistent:

T (u®(-), 28; al-), @) < 0,
(2.9) Fla® (), 20 a(),z0) <0 VielL,
K'(u"(),28; a(-),20) = 0

This can easily be proved by contradiction. Assume that @.(-), ZTo. satisfy
conditions (2.9). Since all the operators in (2.9) are linear with respect to a(-), Zo,
the pair (e@.(-), To.) for any £ > 0 also satisfies all the conditions (2.9). The last
condition (2.9) implies

K (6°(-) + €t (), 25+ o) = of2).

Together with the condition I' = R¥¥) this implies, by Lyusternik’s theorem (see
Theorem 16.3 of Part 2), that for any £ > 0 there exists a pair (@.(-), £o.) such that

esssup [uc(t)] = o), |Zo:| = ofe),
(2.10) Pelto ]
K (u?(") + e (-) + @ (-), 2§ + £Zox + Fo.) = 0.
Denote u”(t) -+t () + . (t) by u(t; ) and z§+£Zos +Zo. by 20(g). Then, obviously,

-~

(2.11) K(u(-;¢),20(g)) = 0.
On the other hand, (2.10) implies that
esssup [u(t;e) —u’(t)] = O(e),  |zo(e) — 25| = O(e).

Hence we can apply the first order Taylor expansion for J , F at the point (u°(-), 29),
which yields

o~

() = J((), 28) = T (u(), 25wl ) = (), w0(e) = ) + ofe),
(u(-56),0(e)) = P(u(), 20) + F'(u(), 28; u(-56) = u’(),w0(e) = 2) + ofe).

£
&
5
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By (2.10) this implies

(u( ;5)7"50(5)) - ‘/]\(uo()v‘rg) =& /(UO(‘)P,E(O); ﬂ*(‘),f0*> + 0(€)>

As a direct consequence of (2.9) we obtain that for sufficiently small £ > 0
(2.13) T(ul-;2),wo(e)) < J(u(),29).
Consider the expansion for F.If i is an active index, i.e., ¢ € I, then
Fy(u°(-),28) = Fi(zf,23) = 0.
In this case (2.12) and condition (2.9) imply that for small £ > 0
ﬁ(u( ;€),z0(2)) <O.

i ¢ 1, then Fi(u®(-),23) = Fi(xd,2]) < 0, and (2.12) implies by continuity that
for small £ > 0
Fl(u( ;E),(L‘o(E)) < 0.

Thus we have shown that for any index i € {1,...,d(F)} for small £ >0
(2.14) Fi(u(-;2),20(2)) <O.

The inequalities (2.13), (2.14) and the equality (2.11) imply that there is no weak
minimum at the point (u”(-),23). This proves our assertion.
Thus we have shown that the following alternative is a necessary condition for
a weak minimum at the point («°(-), 23):
either
r # R({(K),

or the linear inequalities and the equation
(2.15) FHuC(), 235 a(-),50) <0 Viel,

are inconsistent.

The definition of I' as well as the definitions of Frechét derivatives at the point
(u"(-),23) contain only the first order derivatives of the functions involved in the
problem on the trajectory (z°(¢),u"(¢),t). Hence this necessary condition is a first
order condition.

Since the spaces R4 R RIK) are finite-dimensional, the conditions
(2.15) involve actually only a finite number of linear functionals. Then this condi-
tion has the following dual form (see Theorem 16.5 of Part 2):
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There exist ag, a, 3 such that

(2.16) >0, aeRM) 4>0, BeRU),
(2.17) ao + |a| + 3] > 0,
(2.18) aF(u°(-),25) =0,

(2.19) aoj/(uo(.)718; 77'(')7520) Jraﬁ/(uo(-)?xg; 77,(.)7520)
+BR'(u(),2; a(),80) =0 V()@

It remains to rewrite these conditions as conditions imposed directly on the trajec-
tory (z°(¢),u«°(¢),t). Clearly, only the last two conditions have to be modified.
Since F'(u’(-),z5) = F(x],zY), condition (2.18) can be rewritten as

(2.20) al(z§,2)) = 0.

Consider condition (2.19). Taking into account the equality X;(u%(-), z§) = z¥
and formulas (2.7), rewrite (2.19) in the form

ao( Ty, (25, 2220 + T, (25, 2)2(t1)) + o Fy, (2, 21)20 + Fy, (25, 20)2(t1))
+ B(K,, (w0, 21)@0 + Ky, (24, 2)(t1)) = 0
for all Z(¢) such that
B(8) = £ (0, u2(0),8) 2(0) + FL (200, u0(0), 6) alt),  #(t0) = 7o,

Put
U=zo,x1) = agd(zo, 1) + aF (20, 21) + BK (0, 71)

(suppressing the dependence of I on ag, «, 8). Then we obtain that (2.19) is
equivalent to the condition that

(2.21) Iy (20, 21)T0 + 1, (25, 29) 71 = 0
for all z; such that ; = Z(¢1) with Z(t) satisfying the equation
(222) (8 = [0, (1), 1) 5(0) + £, (t), ) alt), #(to) = To.

Let us express the left-hand side of (2.21) directly in terms of @(¢) and zo.
Let () (with d(¢) = d(x)) be an absolutely continuous on [tg, ¢1] solution of
the equation

(2.23) —(t) = (1) f1(2°(1),u (1), 1)
satisfying the initial condition
(2.24) D(t1) = —1, (8, 2Y).

Multiplying (2.22) by (¢) and (2.23) by z(t) and subtracting the latter product
from the former we obtain

(2.25) & 0(0)) = B0, 00(0), 1) u(o)
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Integrating this equality with respect to ¢ over [¢g,t1] we get

(2.26) B(t)E(t1) — P(to)z(to) = / p(t) 1 (°(8), uO(t), ) alt) .

Invoking the initial values Z(¢q) and 4(%1) given by (2.22) and (2.24), we obtain

31
1, (@3 aDalt) = vltoyan + [ D10, 00, ) ale) .
to
Now condition (2.21) can be restated in the following form:
(t2, (20, 2) = (t0)) To
(2:27) - / YOS (@0, a(0), 1) alt) de =0 Va(t), zo.
to

Since (1) and Zg are arbitrary and unrelated to each other, this condition is equiv-
alent to the conditions

(2.28) b(to) = (2, 29),
(2.29) D) f1(2°(t), u"(2),8) = 0.

It remains to gather the conditions obtained in order to formulate the necessary
condition for a weak extremum in the final form.

THEOREM 2.1. If the tragectory (z°(t),u’(t),t | t € [to,t1]) is a weak minsmum
tn the problem on a fixed time interval, then the following conditions necessarily
hold.

There erists a tuple A = (ap, o, 8;1(t)) such that

ap 20, a=(ay,...,0qr), o >0 foreachi, pe RHUK)
(2.30)  <(¢)is an absolutely continuous function
defined on the interval [tg,#1], d(¢) = d(),

(2.31) aF(z5,29) =0,
(2.32) bto) = U, (25, 27),  b(t1) = 1, (20, 2Y),
where

lzo, 1) = Oéoj(xoﬂh) + OZF($07 551) + BK (z0, z1),

(2.33) — (1) = (1) f1(2"( ), 1),
(2.34) w(t)f;(xo(tmo( ), ) = 07
(2.35) ag + |al + 18] > 0.

Following optimal control theory, we call (2.30) the incidence conditions, con-
dition (2.31) is called the complementary slackness condition, (2.32) are called the
transversality conditions, (2.33) is called the adjoint equation, (2.34) is the local
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mazximality condition, and (2.35) is called the nontriviality condition. We refer to
the function ¢ (¢) as the adjoint variable.

Analysing conditions (2.30)—(2.35), we see that the same function depending
on ¢, z,u,t, namely,

H(¢7 x? u? t) = wf('CE? u? t)

appears twice. Using this function, we can rewrite the equation & = f(x,u,{) in
the form
d
(2.36) o = Hy(,2,u,1)
dt
and the adjoint equation in the form

a _

(2.37) p = H, (¢, z,u,t).

The local maximality condition becomes
(2.38) o (6(8), 2°(8), w0 (£),1) = 0.

The function H (v, z, u,t) plays an important role in optimal control theory and is
referred to as the Pontryagin function.

Clearly, conditions (2.30)—(2.38) can be also used in the problem of §1, i.e.,
when the time interval is not fixed.

In the next section we will show that the well-known Euler equation for the
simplest problem of the calculus of variations is a consequence of conditions (2.30)—
(2.38).

3. Two examples

EXAMPLE 3.1. The simplest problem of the calculus of variations. This is the
problem of the following form:

(3.1) /t 1 f(z(t),2(t), ) dt — min, z(tg) =a, z(ty) =0b.

Here [to, ¢1] is a fixed interval, and a and b are given vectors.

In order to represent this problem in the form (1.1)—(1.4), which in optimal con-
trol is known as the canonical form, we proceed as follows. Introduce an additional
state variable y (with d(y) = 1) and consider the system of equations

dy dr
Moreover, put
(3.3) J(yo,zo,y1,21) = y1 —yo, K(yo,x0,y1,71) = (x0 —a, 1 —b).

Then the problem (3.1) can be rewritten in the form

J(yo, z0,y1, x1) — min
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under constraints

K(y07x07y17x1) - 07
where the trajectory (y(¢), z(t), u(t)) satisfies the equations (3.2) on [tg,¢1]. This is
the canonical form of the problem, which permits us to write down the conditions
(2.30)—(2.38).

As we know, the adjoint variable belongs to the space of the same dimension
as the state variable. In our problem the state variable is the pair (y,z). Hence the
adjoint variable is also a pair (¢, ¥5), where d(¢,) = d(y) = 1 and d(¢,) = d(z).
The function H has the form

H = b, (2,0, 6) + .

The function [ has the form

l = ao(yr —yo) + Polwo — a) + Bi(x1 —b),

where d(3;) = d(z), i=0, 1.
Let a trajectory (z(t),w(t),t) satisfy the conditions (2.30)—(2.38). The adjoint
equation for w, yields

since H does not depend on y. Therefore, ¢, (¢) = const. At the same time the
transversality conditions imply

¢y(to) = l/yo — —«p.

Hence ¢, = —aq.

Let us show that ap > 0 (the arguments below are often used in optimal
control). Assume the contrary. Then , = 0, hence H = ¢,u. Then the local
maximality condition implies that v, (¢) = 0. But by the transversality conditions

Ya(to) = U, = Bo,  alth) = =1, = =P,

which implies that 3y = 81 = 0. At the same time, ag + |Go| + |81| > 0 by the
notriviality condition. Thus we arrived at a contradiction. So, cp > 0. Since ayg,

Bo, P1 enter linearly into the necessary conditions, we may put og = 1. Hence
¥y (t) = —1. Therefore,

H (1py (1), a (£); y(2), 2(8), u(t), 1) = —f (2(8), u(t), 1) + o (t)u(t).

It remains to consider the adjoint equation for ,(¢) and the local maximality
condition. In this case these conditions have the form

dy,
(3.4) 5~ Jelat),u(®),),

%(t) = f;(x(t%u(t)?t)'

These conditions are well known in the classical calculus of variations.
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If w(t) is a continuous or piecewise continuous function, we can exclude 1,
from the conditions (3.4) because the second condition in (3.4) is then fulfilled
everywhere rather than almost everywhere. On doing so, we obtain

d ’ o
Efu(x(t)7u(t)7t) - fz(x(t)7u(t)7t)'

But w(t) = &(¢). Hence we obtain a second order equation for z(¢), which should
be supplemented with boundary conditions

z(tg) = a, z(ty)="b.
Equation
& (w0, 8(0),1) = £ (o (0),5(0),0)
is the well-known Fuler equation.

EXAMPLE 3.2. Isoperimetric problem. In this example we consider a particular
problem rather than a class of problems. This is the famous isoperimetric problem
of the classical calculus of variations. Its original formulation is as follows.

Among closed curves on the plane with a prespecified bound on the length, find
the curve which encloses the largest area.

Consider one of the most natural formalizations of this problem. The curves
on the plane will be given in a parametric form, assuming that the state variable is
an absolutely continuous function of the parameter. This is a justified assumption
since the curves in the problem are assumed to be rectifiable. We will also assume
the parameter ¢ to run over the interval [0, 1].

Thus, let z(t) be a closed curve on the plane. As is well known, its length

equals
1
[
0

1
/ Vaz dt,
0

where V is a certain skew-symmetric constant matrix.
Hence we may consider the following problem:

and it encloses the area

1
/ Vzz dt — max
0

under conditions .
/ |Z|dt <, z(0) = z(1).
0

This problem reduces to the following canonical form:
Minimize J = zp — z1 over the solutions of the system of equations
dz dy dx

E:me E:|u|7 P

under the conditions y1 —yo < I, zo = z1.






