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ON SINGULAR GEODESICS IN A SUB-RIEMANNIAN METRIC 

A A MILYUTIN 

ABSTRACT This paper is an investigation of approximation of a singular geodesic 
by nonsingular geodesies. It is proved that under certain assumptions a singular 
geodesic can be approximated by sequences of two types. On a sequence of the first 
type the conjugate points do not get close On a sequence of the second type the 
distance between the conjugate points tends to zero. 
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In recent times significant progress has been made in the author's view in the theory of 
singular geodesies, due to the attraction of the theory of quadratic conditions for singular 
extremals in optimal control developed by the author and especially A. V. Dmitruk. 
Namely, Dmitruk proved that the quadratic conditions for rigidity obtained somewhat 
earlier by the author [1] are also quadratic conditions for a singular geodesic [2]. Thus, 
the deep connection between the theory of rigidity and the theory of singular geodesies 
was explained. The most striking result of Dmitruk was that each quadratically rigid 
(Milyutin) trajectory is a singular geodesic that realizes a strong minimum in any strictly 
convex submetric, in particular, in any sub-Riemannian metric. Nonsingular geodesies 
never realize a minimum independent of the submetric. Thus, a new and extremely 
strong minimum condition has been found for singular geodesies. 

In the present paper we investigate locally quadratic rigid geodesies from the point 
of view of the influence on sequences of nonsingular geodesies approximating them. Our 
main result complements and, as it were, balances the above result of Dmitruk. 

CHAPTER I. APPROXIMATION OF A SINGULAR 
EXTREMAL BY NONSINGULAR EXTREMALS 

§ 1. GENERAL FACTS 

Suppose that in a domain Q in Rn we are given a distribution Г(ж), l E f i , of dimension 
m < n (that is, Г(ж) is a subspace of Rn of dimension m), and assume that on ft we are 
given twice continuously differentiable vector fields го(ж),... , rm_i(ar) with values in Rn 

such that Г(ж) is the linear span of the fields r o , . . . , r m _ i . In other words, 

Г(ж) = Lin(r0(:r), . . . , rm_i(x)) \/ж G Q. 

Thus, for each ж G 0, the vectors r o , . . . , r m _ i form a basis of Г (ж). We denote by b the 
basis ro (x),..., rTO_i(ar), and by В the set of bases. 

We define a metric on Г (re) as follows. Let Q(x) be a positive-definite matrix on Rn 

that is twice continuously differentiable on fl. For x G fl and £ G Г(ж) we let 

This determines a metric on Г (ж). 
Let us consider the differential inclusion 

(1) x G Г(ж). 

By a trajectory of the inclusion (1) we mean an absolutely continuous function x(t) 
defined on some interval [£o,£i] a n d satisfying (1) almost everywhere on it. In what 
follows, the function x(t) will often be denoted by ж. This applies also to other functions. 
Suppose that we are given a trajectory of the inclusion (1): x — x(£)|[£o,£i]- Let 

l(x) = / п(ж,ж) dt. 
to 

We consider the problem of the shortest path: 

l{x) —> min; x(t0) — ж*, x(ti) — ж**. 
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The function ж is a trajectory of (1). Let us rewrite this problem as follows. A basis 
b = го(ж),. . . , rm_i(x) is said to be orthonormal if 

Q(x)Yi(x)Yi(x) = 1, г = 0, . . . , m - l , 
Q(x)ri(x)rk(x) = 0, г, к = 0 , . . . , m — 1, i Ф k. 

The set of orthonormal bases is denoted by B 0 . It is clear that B 0 ф 0. Let b G Bo- We 
consider a control system 

m—l 
(2i) X = ^2 ЩГг(х). 

г=0 

Here x is the phase variable and и — (щ,..., um-i) is the control. Clearly, the control 
system (2i) is equivalent to the inclusion (1). 

For a solution of the system (2i) we have 

n(x,x) = |w| = 
m—l 

.,2 

4^ 
\ г=0 

We supplement the control system (2i) by the requirement 

(22) u2 = 1. 

Then the problem of a shortest path can be formulated as a time-optimal problem in the 
system (2i), (22): 

(23) ti—to-+mm; x(t0) = ж*, x(ti) = ж**. 

We say that the trajectory (x(t),u(t)\[to,ti\) of the system (2i), (22) is a geodesic if it 
satisfies the maximum principle in the problem (2з). It is important to note that, as 
shown by the author in [1], this definition does not depend on the choice of basis in the 
set Bo-

For a trajectory (x(t),u(t)\[to,ti\) of the system (2i), (22) we write out the conditions 
of the maximum principle. 

The Pontryagin function has the form 
m—l 

H(lp,X,U,t) = ^2 Uii>ri(x); 
г=0 

correspondingly, the Hamiltonian has the form 

H(ip,x,t) = max H(ijj,x,u,t) = 
u\u2=l 

m—l 

\ г=0 

The conditions of the maximum principle are the following: there exists a function 

^ ( t ) # 0 | M i ] 

such that 

(3i) H(TP(t),x(t),u{t),t) = H(i>(t),x(t),t)\[toM 

(з2) -4 = H'x(ti>(t),x{t)Mit),t), 
(33) H(ip(t),x(t),u{t),t) = const. 
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A triple of functions 
j=(^{t),x(t),u(t)\[t0,t1)) 

satisfying the conditions (3i), (З2), (З3) is called an extremal of the control system (2i), 
(22). 

It follows from the conditions (3i), (З2) that the extremals break up into two classes: 
the extremals on which H ^ 0, and then H > 0, and the extremals on which 

(4) U = 0. 

We call the extremals of the first class nonsingular extremals, and those of the second 
class singular extremals. 

In connection with this definition it is important to make the following clarification. 
We call the function ip(t) the conjugate component of the extremal, and the function x(t) 
its phase component. Then [1] under a change of the basis in the set Bo the conjugate and 
phase components remain unchanged, and hence the value of the Hamiltonian also does 
not change. Thus, the concept of a nonsingular or singular extremal does not depend on 
the basis b G B 0 . 

Proposition 1. The set of phase and conjugate components of nonsingular extremals 
coincides with the set of solutions of the Hamiltonian system 

,_ч х = Нф(ф,х), 
(5) , 

-ф = Кх{ф,х). 

Proof. Before starting the proof we remark that, since H does not depend on t, we omit 
this argument. We do the same with the Pontryagin function H. Let us now proceed to 
the proof. 

Let 7 = (?/>(£),ж(£),w(t)|[to,ti]) be a nonsingular extremal, and let t* E [to,ti] be a 
point at which the functions ф and x are differentiable and satisfy the equalities 

TO — 1 

i=0 

-ф(и) = Н'х(ф(и),х{и),и(и)), 
Н(ф{и),х(Ъ),и(**)) = Н(ф(и),х(и)). 

It follows from (2i) and (3i), (З2) that the set of points £* satisfying these conditions is 
a set of full measure on the interval [£o,£i]. 

In a neighborhood of the point ф*,х* (ф* = ф(Ъ), х* = x(t*)) we consider the function 
Hfy,x,u(t*)). This function satisfies the inequality Hty,x,u(t*)) < Н(ф,х) and the 
equality Hfy*,x*,u(t*)) = Н(ф*,х*). By definition, H is a differentiable function at 
each point at which it is nonzero. Since 7 is a nonsingular extremal, it follows that 
Н(ф*,х*) > 0, and hence Tt is differentiable at the point (ф*,х*). Consequently, 

#^(^*,ж*, «(<*)) = Н^(ф*,х*), 

Нх(ф*,х*,и(Ъ)) = Нх(ф*,х*). 

Hence, 
x(U) = Чф{ф*,х*), -ф(и) = Нх(ф*,х*). 

These equalities hold almost everywhere on [£o,£i]. But the right-hand side is a con­
tinuous function, and consequently the pair ф^),х^) is a solution of the Hamiltonian 
system (5). 
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Suppose that if){t),x(t) satisfy the system (5). Since H does not depend on t, H is 
constant on a solution. Let H > 0. Then, setting 

it is easy to see that 7 = (ip(t),x(t),u(t)\[to,ti]) is an extremal of the system (2i), (2г). 
Proposition 1 is proved. D 

When referring to an extremal, we shall say that it belongs to some level of H. Com­
plete information about nonsingular extremals can be obtained from the solutions of 
the system (5) for a single level of H. This follows from the fact that H is a positive-
homogeneous function of ф of degree 1. 

Let us proceed to the investigation of singular extremals. We cannot use the sys­
tem (5), because the Hamiltonian Н(ф,х) is not differentiable at any point of the zero 
level of H. Therefore, we have to rely only on the conditions (3i), (З2), (З3) of the 
maximum principle. 

For a trajectory (x(t),u(t)\[to,ti\) of the control system (2i), (2г) we let Фо(ж) be 
the set of functions ф{Ь) such that (^>(£),ar(£),w(£)|[£o»£i]) is an extremal, with ф{Ь) 
normalized in some way. We have already noted that the pairs ij)(t),x(t) corresponding 
to extremals do not depend on the choice of basis, and hence not on the control u(t). 
Therefore, we write Фо(ж) and omit the dependence on the control. 

An element 
^(*)|[to,*i]e*o(x) 

is said to be nonsingular if the corresponding extremal is nonsingular, and singular if 
the corresponding extremal is singular. Taking the terminology further, we say that a 
geodesic (x(t), u(t)\[to,ti\) is nonsingular if all the elements of Фо(x) are nonsingular. We 
say that a geodesic is singular if all the elements of Фо(ж) a r e singular. Finally, we say 
that a geodesic has mixed type if Фо(ж) contains both nonsingular and singular elements. 
There are two quite distinct cases from the point of view of approximation of a singular 
extremal by nonsingular extremals. 

Before formulating these cases, we give one more explanation of the terminological 
order. Since a geodesic and its set Фо do not depend on the basis b, in referring to a 
geodesic we shall have in view the phase component x = x(t)\[to,ti] of the trajectory. 

Let us return to our topic. First, a singular extremal can turn out to be such that 
its phase component is a geodesic of mixed type. The second case consists in the phase 
component of a singular extremal being a singular geodesic. 

In the first case the approximation of the singular extremal by nonsingular extremals 
can be implemented in an elementary way. 

Indeed, let 70 = (ifj0(t),x0(t),u°(t)\[to,ti\) be a singular extremal, and let 7 1 = 
(,01(t),a;o(t),wo(t)|[to,ti]) be a nonsingular extremal. Then 

7е = (еЛ*) + ЛЛ*),Л*)|[*о,*1]) 
is easily seen to be a nonsingular extremal for any s > 0, and 7е —> 70 as e —> 0 in the 
sense that lim ||V>e(£)->°(£)||oo = 0, lim \xe{t\-x*{Ш^ = 0, and lim Ы^-и0^)^ = 

£—>0 e—>0 e—>0 

0, where tp£(t) = еф1^) + ip°(t), x£(t) = x°(t), and u£(t) = u°(t). Here || • ||oo is the 
norm in the space L^ on the interval [£o,£i]. 

Approximation of a singular extremal by nonsingular extremals is incomparably more 
complicated in the second case. In addition we have to make certain assumptions about 
the extremal 70 , though the assumptions are natural in the author's opinion. First of all 
we assume that the phase component of the extremal 70 = (rr°(t)|[to, ^i]) has on [io^i] 



110 A. A. MILYUTIN 

a twice continuously differentiable derivative x(t) and does not have self-intersections. 
Further, we assume that at each point t of [£o,£i] 

(6) Ф°Шп, rk](x°(t)) = 0, t, к = 0 , 1 , . . . , m - 1. 

Here [pi,p2]{x) — p1(x)p2(x) — p2{x)pi(x). This condition is connected with necessary 
conditions that the geodesic realize a shortest distance. Namely, if Фо(ж) does not contain 
such extremals, then the phase component x never realizes a shortest distance. 

Therefore, it is natural to be interested in the approximation of such extremals. 
Dmitruk, who proved the necessity of the existence of such extremals in the problem 
of a shortest distance [2], called them Goh extremals. Accordingly, we consider not just 
any extremal, but a Goh extremal. 

However, this is not yet all. The following assumption requires some preliminary 
definitions. We say that a basis b G Bo is an associated basis with respect to the phase 
component £°(£)|[£o,£i] if ro(x°(t)) = x°(t) \/t G [to,ti]. The set of such bases will be 
denoted by Во (ж0). It is not hard to see that Во(ж°) ф 0. In an associated basis w[](£) = 1 
and Ui(t) = 0\[to,ti], i = 1 , . . . , m — 1. 

Let b G Во (ж0). We denote by D°(t) the (m — 1) x (m — 1) matrix with elements 
d%k(t) = •0°(^)[[rj,ro]rfc](x°(t)), i,k = 0 , 1 , . . . , m — 1. It is easy to see that the Goh 
condition (6) implies that the matrix D°(t) is symmetric for any t G [£o,£i]. 

As proved by Dmitruk, the condition that Фо(ж°) must contain Goh elements such that 
the matrix D°(t) is nonnegative definite for any t G [£o,£i] is a necessary condition on a 
geodesic in the problem of a shortest path. This class of extremals is called the Legendre 
class of extremals. However, it is not Legendre extremals that appear in the sufficient 
conditions, but extremals which we call plus-Legendre extremals. These are extremals 
such that the matrix D°(t) is positive definite for any t G [£o,£i]. Therefore, we shall 
consider extremals of two types: plus-Legendre and minus-Legendre extremals. The 
conjugate component of the latter differs only in sign from the plus-Legendre elements 
of the set Фо(ж°). Such extremals will be called definite extremals. 

Accordingly, we consider singular geodesies and choose in Фо the Goh definite ele­
ments. It is such extremals that will be approximated by nonsingular extremals. We 
note that the concept of a Goh extremal does not depend on the basis b G B 0 , and the 
concept of a definite extremal does not depend on the choice of b G Во (ж0). This was 
proved by the author in [1]. 

§ 2 . T H E EXTENDED SYSTEM 

In this section we let w = (ip, x). For a definite extremal 70 = (w°(t), u°(t)\A0), where 
A0 = [tj], £?], we choose an associated orthonormal basis. Then, obviously, Wo(t) = 1 and 

u4(t) = 0|A°. Let Zi(w) = фг{(х), i = 0 , . . . , m - 1. Then H(w) = ^ E l E ^ ^ H - Also, 
let Zi(w) = ^[гг,го](ж), i — 1 , . . . , m — 1. Obviously, Zi(w°(t)) = 0 for i = 0 , . . . , m — 1, 
and Zi(w°(t)) = 0 for i = 1 , . . . ,m - 1. 

Let p(x) be an arbitrary field. Then from the extremality equations it follows that 

, m—1 

(1) ~dt^P^ = ^ икф[р,гк](х). 
i=0 

This formula will be used repeatedly. 

Proposition 1. Let t* be an arbitrary point of A0, and let w* — w°(t*). Then the gra­
dients ziw(w*), i = 0 , . . . , m — 1, and Ziw(w*), i = 1 , . . . , m — 1, are linearly independent. 
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Proof. Let /J, — ( д 0 , . . . , Atm_i), v — (yi,... vm-i), and w = (ф, ж). We show that the 
system of equations 

ziw{wif)w=-p,i, г = 0, . . . , r a - l , 

^ш(гу*)гу = г7», г = 1 , . . . , г а - 1 , 

is solvable for any /Z and г;. 
We introduce the vector field 

m—1 m—1 
p(x) = a0(x- x*, r0 (ж* ))?/>* + ^ а;1\(ж) + J ^ /ЭДг*, г0](ж). 

г = 1 г = 1 

Here «о? • • • ,Om-i and /?i , . . . ,/3m_i are undetermined coefficients which we find by 
solving (2). We look for w in the form 

(3) ф = (ф*р'(х*)), x = -p(x*). 

Let w be substituted in (2). We have 

ziw(w*)w = фгг(х*) +ф^г1{х*)х = ^*[р,г»](ж*), г = 0, . . . , г а - 1, 

^ , (w*)w = V»* [р, [гь го]] (ж*), г = 1 , . . . , га - 1. 

Then (2) passes into the system 

ф*[р,Гг](х*) = р{, г = 0 , . . . , ш - 1 , 
(4) 

V>* [/>, [Гг, Го]] (ж*) = V», 2 = 1, . . . , 771 - 1. 
Let us consider the zeroth equation of the first group. The equations (4) break up into 
three blocks: 

(4i) Ф4Р,Г0](Х*) = /Z0, 

(42) Ф4р,г{](х*) =Д4 , г = 1 , . . . , г а - 1 , 
(43) ^*[рЛгг,го]](ж*) = й», г = 1 , . . . , г а - 1 . 

The left-hand side of the first block does not contain the variables cui,... , a m _ i nor 
/? i , . . . , Pm-i. Indeed, the coefficient of oti\ . . _x is equal to ^*[Гг5

 ro](^*), and by (6) 
of §1 this is zero. The coefficient of $ | _ is equal to ф* [[r ,̂ го], го] (ж*). By (1), 

^[[г,,г0],г0](ж*) = ^ ° ( * ) [ г г , г 0 ] ( ж 0 ( * ) ) | ^ = 0 . 

Finally, the coefficient of ao is equal to т^{х^)ф1 > О. 
We proceed to the equations of the second block. This system does not contain the 

variables a.\,..., CKTO_I . Indeed, the elements of the matrix of coefficients of a.\,..., aTO_i 
are equal to ф*[г{, г^](ж*) (г, к — 1 , . . . , га — 1), which are equal to zero in view of (6.1). 
The matrix of coefficients of A| i : = 1 m_1

 n a s the form ф* [[r^, го], г&] (ж*) (г, к = 1 , . . . , 
га — 1). By assumption, the extremal 70 is definite, and therefore this matrix (it coincides 
with D°(t*)) is nonsingular. 

Finally, we consider the equations of the third block. The matrix of coefficients of 
« I , . . . , am-i in the system (4з) has the form ф* [r^, [r^, го]] (ж*) (г, к = 1 , . . . , га — 1). It 
is easily seen to coincide with D°(t*), and hence is nonsingular. From this consideration 
of all three blocks in the system (4) it follows that the system is uniquely solvable for 
any JL0, ... ,pZm_1

 a n d vi,.. .vm-i. Consequently, the system (2) is always solvable. 
Proposition 1 is proved. • 
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We consider the Hamiltonian system and its solutions belonging to the domain of 
positivity of the Hamiltonian H(w). Setting 

Щт) = $ ± , i = 0 , . . . , m - l , 
H{w) 

we write the system in the form 

m—1 

(5) г = 0 
v ' m-l 

г=0 
m—1 

г=0 

Setting z(w) = (zi(w),..., zm-i(w)), we write the system (5) in the form 

,„\ • zo(w) . . . . ч z(w) 

(6) W=4da(w) + A(W)M^Y 
where a(w) = (—tprQ(x),ro(x)), and A(w) is a 2n x (m - 1) matrix. The equation (6) 
will be needed in what follows. 

We determine how z(w) varies along a solution of the system (5). For г — 1 , . . . , m — 1 
we have, by (1), 

d m _ 1 

(7) ^ = ^2 Uk{w)ip[Ti,rk](x), 
k=0 

d2 о m _ 1 1 
(8) d ? ^ = E ?^^И^Г*>ГЖжМГг>г*](я) 

m—1 

+ J Z uk(w)Us(w)ip[[ri,rk],rs}(x). 
fc,s=0 

We need to transform the formula (8). To avoid unnecessary awkwardness, we introduce 
the notation 

[Ti,rk](x) = [i,k](x), i,fc = 0 , . . . , m - 1, 
[[г*, rfc], r J (x) = [г, £; з](ж), г, /с, s = 0 , . . . , m - 1. 

We have 

,2° о m—1 ° \ 2 

(9) ^ = ^ £ * 0 ] ( z ) # , f c ] ( z ) + ( ^ j # , 0 ; 0 ] ( x ) 
fc=0 

m— 1 о о m—1 

fc=o П П
 fc=l 

s = l 

m—1 о о о та—1 о 

/c ,s=l s = l 



ON SINGULAR GEODESICS IN A SUB-RIEMANNIAN M E T R I C 113 

The following notation will be used: 

m— 1 

fc=0 

62И = #,0;0](Ж), b2M = (b?H,.. . ,^_i); 
m—1 

(Ю) B j , H = ] [ ] ф[к, з](х)ф[1, Щх), B\w) = { B i H } , г, s = 1 , . . . ,m - 1, 
fc=0 

S ? f c H = #,Ar;0](a;), £ 2 H = {£&(«;)}, i, A; = 1 , . . . ,m - 1, 

£ 3
f c s H = # , /г; s](x), £3(u;) = { £ ? f c e H } , г, к = 1 , . . . , m - 1; 

Dis{w) = ip[i,0;s](x), D(w) = {Dis(w)}, i, к = 1 , . . . ,m - 1. 
According to (9), - 7 ^ can be represented in the form 

§ = l"» + ( | ) W ^ B > ) . + |BV> + B>) | . I + \D{W)\. 
We can now define the extended system. Let z — (z\,..., zm-i). The phase space of 

the extended system is the space of triples H,w,z. The domain of the extended system 
2 / 2 

consists of the triples for which H > 0 and H — z2 > 0. Let ZQ(H, Z) = yH — z2. The 
extended system has the form 

™= = a(W) + АЫ~, 
ft IT 

ID $->(-)+(J)V(-)+^(-)i,+V(-). 
K }n n n n 

The right-hand side of the last equation will be denoted by F(H,w,z). There is a 
connection between the solutions of the Hamiltonian system (6) and the solutions of the 
extended system. 

Suppose that w(t)\A is a solution of (6) such that zo(w(t)) > 0|Д. Then H = 
H(w(t)),w(t),z(t) — z(w(t)) is a solution of the system (11) on A. The transition 
from solutions of (11) to solutions of (6) is given by the following proposition. 

Proposition 2. Let (7i,w(t),z(t)\[to,ti\) be a solution of the system (11) such that: 
1) H = H(w(t0));_ 
2) °zo(w(to)) = zo{H,z(t0)); 
3) z(w(t0)) = z(t0); 

4) *L 
' dt 

_ cb 
, ,~~ dt 

го (to) 
Then {w{t)\\to,t\\) is a solution 0/(6) such that 

H{w{t)) = % z0{w{t)) = z0{% z(t)), z(w{t)) = z{t). 

Proof. Let w(t) be a solution of (6) such that w(to) — w(to). Then on some interval 
[to,i'], t' > to, the solution w(t) is defined and the condition zo(w(t)) > 0\[to,t'] is 
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satisfied. Since w(to) = w(to), it follows that H(w(t)) = 7^|[£o,£'], and hence z(w(t)) — 

zo(H,z(w(t))y Prom this it follows that (H,w(i),z(w(t))\[to,t']) is a solution of the 

system (11). By assumption, z(to) = z(w(to)) and z(to) = -rz\~, ,. Prom this, by the 

uniqueness theorem for the extended system, it follows that H(w(t)) = H, w(t) = w(i), 

and z(w(t)) = z(t)\[to,t'], and moreover, zo(w(t)) = zo(H,z(t))\[to,t']. The statement of 
the proposition follows from what has been proved according to the induction principle.• 

Below we use the extended system to construct a sequence of nonsingular extremals 
approximating a given definite extremal. 

§ 3. ESTIMATE OF SOLUTIONS OF A CAUCHY PROBLEM 

We consider a finite-dimensional space of elements p of dimension d(p), that is, p = 
(p i , . . . ipd(p))- Let V(i) be a function defined on the interval [0,T], where V(t) is a 
symmetric d(p) x d(p) matrix satisfying the following conditions on [0, T]: 

a) there is a constant Ло > О such that 

(la) \0p2<V(t)pp\[0,T] VpeRd^; 

b) there is a constant CQ > 0 such that 

(lb) И*)Н<|И2|[о,т] чрев*™. 
On [0, T] we consider the equation 

(2) p = -m>+/(*) , 
with the initial conditions 

(3) p(0) = po, p(0) = po-

Let us estimate the solution in terms of T, Ло, Co, ||/||oo5 where ||/||oo is understood to be 
essmaxtG[0,r] |/(*)|- Multiplying (2) by 2p, we get 

±(V{t)pp + p2)=2f{t)p + V(t)pp. 

Setting p = y/Vpp + p2, we find from this and (1) that 

^ 2 ^ oil jrи , c 0 1 2 

Consequently, 
dP ^ i i / i i • c° l 

This implies the estimate 

(4) HPIIOO < vo ехр{с0/2Л0} + T\\fU е х Р Ь / 2 А 0 } ~ 1 

с0/2Л 

where po — p(0). 

Let us estimate / V(t)p(t)dt 
Jo 

. Integrating (2) with respect to t, we get 

t г 

J V(t)p(t) dt = I f(t) dt + p0- p(t). 
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Consequently, 

/ 
Vpdt < T | | / l l o o + foo| + |N |c 

From this and the estimate (4) we get 

(5) 

Let 

/ 
Vpdt < p0 (exp{co/2A0} + 1) + ГЦ/IU ( ' е х Р Ь / 2 Л ° } l + i 

CQ/ZA0 

C(Ao,Co) = max(exP{Co/2Ao} + l; e x P W 2 A o } 1 + Д 
L c0/2A0 J 

Then the estimates (4) and (5) can be coarsened to the following: 

\\y\\oo 
< c(Ao,c0)(po + T| | / | | o o I •> 

t 
(6) ( Vpdt 

0 

<c(A0,co)(po + 7ll/||oo). 

We remark that the estimates (6) do not depend on the dimension d(p) of the space of 
elements p. 

§ 4. ESTIMATES OF SOLUTIONS OF A BOUNDARY-VALUE PROBLEM 

As in the preceding section, in this section we consider the space Rd^ of elements p 
together with a function V(t) defined on [0,1], where V(t) is a d(p) x d(p) matrix assumed 
to satisfy the following conditions: 

a) there is a Ao > 0 such that 

(la) X0p2<V(t)pp\[0,T] Vp €#*<'>; 

b) there is a CQ > 0 such that 

(lb) \V(t)p\<c0\p\№T] VpeRd(p\ 

On [0, Г] we consider the equation 

(2) P = f + V(t)p 

and the boundary conditions 

(3) p(0) = p(T) = 0. 

We shall get an estimate of the solution of this problem in terms of Ao, Co, ||/||oo-
The solution of the boundary-value problem (3), if it exists, is unique. Indeed, oth­

erwise for f(t) — 0|[0,T] there would be a nonzero solution p(t) of (3). Multiplying the 
equation (2) by p, we get 

d2 / 1 ^ \ д* _ 
-Ho I oP2 ) = p + Vpp. 

d_ 
~dt' 

negative, p2 is a strictly convex function on [0, T], and hence p(T) ф 0, a contradiction. 
This proves the uniqueness. 

Let us prove existence. To this end we prove the existence of a Green's function, that 
is, a solution of problem (2), (3) for f(t) — f*5(t — £*), where /* is an arbitrary element 

dt2 \2 

It is clear that -^Lp2 | t= — 0. Since the first part is not identically equal to zero and is not 
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of Rd^\ and** is an arbitrary point of the interval (0,T). Let /* and t* be fixed, and 
denote the Green's function by p(i,£*, /*) . Obviously, it is determined by the following 
conditions. 

1) p~(t, •) is continuous on [0,T]. 
2) ~p(t, •) is a solution of the homogeneous equation with initial condition p(0, •) = 0 

on the interval [0,£*], and p(i, •) is a solution of the homogeneous equation with 
the condition /?(T, •) = 0 on the interval [£*,T]. 

3) 

(4) bright(*•' O-^lieftC**' •) = /*• 

Let A\eit:R
d{p) -»• Rd{p), p0(0) - • p(Q, where p = V(t)p and p(0) = 0. Similarly, let 

bright:Rd^ —> Rd(p\ p(T) —> p(t*), where p(t) satisfies the homogeneous equation on 
[t*,T] and the condition p(T) = 0. It follows from the uniqueness just proved that the 
operators А\е{Ъ and Aright are invertible. 

Let A:Rd(p) —> Rd(p\ p* —> pright(^*) — Pieft(t*), where pright(£) satisfies on [t*,T] the 
homogeneous equation and the initial conditions pright{T) = 0 and pright(^) = А^еЫ,Р*1 
and where pieft(£) satisfies on [0,£*] the homogeneous equation and the initial conditions 
Pieft(O) = 0 and pieft(O) = Aj~ftp*. It follows from the proven uniqueness that A is an 
invertible operator. Choosing p* = Л - 1 / * , we get 

(5) -(t и L) = I PMt<<t^ * e [° '**J' 
I bright(*), t e [£*,T]. 

The conditions (4) are all easily verified, and the existence of a Green's function is proved. 
Let us estimate \p(t, £*, /*) | . According to the formula (5), we should estimate |pieft(i)| 

on [0, £*] and |pright(£)l o n [^n^l- It has already been noted that pfeft(£) satisfies on [0,£*] 
the equation 

d2 / 1 2 \ Л 
dt2 ^P te f t ) =fteft(*) + V(*)«eft(*)P|(*) 

and the conditions pfeft(0) = 0 and pj2eft(0) = 0. According to the condition (la), 
d2 

-jj^Pieit > 2^oP?eft- ftom t n i s it follows that Pieft(t) < p^exp{v/2A^(t - t*)}|[0,t*]. 
Similarly, p2

ight(t) < pi ехр{лД\) (t* -t)}\[U,T]. Consequently, by (5), 

(6) | / 5 ( t , t . , / * ) | 2 < / ^ e x p { - v ^ | t - t , | } | [ 0 , r i . 

Prom this we first estimate |p*| in terms of |/*|. Indeed, by (6) and (5), 

2p*pieft(£*) > pJ\/2Ao, 

2p*Pright(i*) < -p*v2A 0 . 

Subtracting, we get 2p*/* < — 2 pi л/2 Xo. Consequently, |/*| > \p*\y/2\0. This tells us 

that |p*| < |/*|. Using the given estimate, we have 
\/2Ao 
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T 
Let p(t) be the solution of problem (2), (3) for given f(t). Then p(t) — J ~p(t, t*, /(£*)) dt* 

о 
From this and (7), 

т — 
\p(t)\ < J -y= \U\ exp J - у у \t - tAdt, 

^ l i / ! U / e x p { - V Y M } * 4 l ! / l 1 -
Thus, 

(8 ) I H I o o < f H/ l loo. 
A() 

We now get an estimate for ||p||oo- For our purposes it is sufficient to get an estimate 
in the case T > 2. The estimate, like (8), does not depend on T, but for small T it 
is established somewhat differently, and we shall not consider it here. Let Г > 2 and 
U G [0,T]. Then either t* + 1 G [0,T] or t* - 1 G [0,T]. Suppose for definiteness that 
£* + 1 G [0,T]. Integrating (2) with respect to t on the interval [£*,£* + 1], we get 

**+i * 

/0(t* + l)-p(tO = />(**) + | dt J{f{t') + V{t')p{t'))dt'. 

From this it follows easily that 

| р ( * . ) 1 < 2 | | р | | о о + ^ ( | | / | | о о + С о | И 

Then, using (8), we have 

Therefore, 

AQ ^ AQ 

<9> и^ЙЧ + S 
Setting ci(A0, c0) = ( — + - + -^- ) , we finally get 

\Ao z Ao/ 

/-. л \ Wr oo 
< ci(A0,co)||/|| oo? 

r oo < C l (A 0 , C o ) | | / | | oo-
We see that the estimate (10) also does not depend on the dimension d{p) of the space 
of elements p. 

§ 5 . A THEOREM ON APPROXIMATION OF A PLUS-LEGENDRE EXTREMAL 

Let 7° = (w°(t),u°(t)\A°) be a plus-Legendre extremal. We prove the following 
theorem. 
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Theorem 1. There exists a So < |A°| such that for any interval А С A0 with |A| = do 
there is a sequence {7s = (ws(t), ws(t)|A)}s=i ;2, of nonsingular extremals such that 

H(ws(t))=H ^ 0 ass ^ 0 0 , 

IKw-^wL^ofw'), 
H O - A O I L ^ V ^ ) . 

Proof. We break up the proof into several parts. The treatment of a plus-Legendre ex­
tremal is somewhat more complicated than the treatment of a minus-Legendre extremal. 
Therefore, certain parts of the proof will be common to both. 

Part 1. We make some necessary deductions from Proposition 1 in §2. 
Let 77 = (770,?7i, • •. jTjm-ijijm,.. .Щт-2)- It is convenient for us to define \rj\ = 

max \r]i\\i = 0 , . . . , 2ra — 2. It follows from Proposition 1 in § 2 that for all sufficiently 
small r\ and for any t £ A0 there exists a smooth function w^(rj,t) such that 

w*(0,t) = w°(t)\A°, 

Z0(w*(r],t)) =7?o, 

Zi(w*(ri,t)) =гц, г = l , . . . , r a - 1 , 

°Zi(w^(n,t)) = ?7m_i+i, г = 1 , . . . , г а - 1 . 

By (1), there is a /Z > 0 such that 

(2) \w^t)-w°{t)\<-fl\n\ 

for any t € A0 and all sufficiently small 77. 
The formulas (1) and the estimate (2) will also be used in the treatment of a minus-

Legendre extremal. 
Part 2. Let us return to the function F(H, w, z) defined in § 2. For convenience we 

give an expression for it: 

(3) F{%w,z) = ^o1{w)+(?£\ b2(w) + ~B1(w)z+^B2{w)z 

v 'n n н н 

Let w(t) = w°(t) + 6(t)\A°. We estimate the functions depending on w in the expression 
for F when Htfjloo is small, using the formulas (10.2).* Then by (6.1), Ьг(и)0^)) = О and 
(61)^(w°(i)) = 0. According to (1.2) and (6.1), b2(w°(t)) = 0. Further, according to 
(6.1), B1(w°(t)) = 0 and (B1)'^0^)) - 0. By (6.1) and (1.2), B2(w°(t)) = 0. These 

*(10 2) means (10) in §2. 
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equalities imply 

(4) 

the estimates 

\\D(w°{t) 

\\b\w 

\\b2(w 

\\B\w 

\\B2(w 

\\B3(w 

+ *(*))-
\\D(w 

\t) 
\t) 

\t) 

\t) 

\t) 

+ *(*)) 
+ o(t)) 

+ *(*)) 

+ *(*)) 
+ o(t)) 

-D(w°(t)) 

\t) + *(*)) 

loo < Ь 1 ||<5»||2o, 

L<b2\\e\u 
L^HL 
. 2 

< В \\в со, 
IOO — II | |<ЛЛ I <s 3 , 
loo — ' L<D\WU 
| <D°, 
loo — ' 

—\ _2 1 2 3 0 
where b ,6 , P , 5 ,1? , -D, -D are positive constants. The inequalities (4) will also play 
a role in the treatment of a minus-Legendre extremal. 

Part 3. Let 9 = (в^,вх) G R2n, £ - (&, . . . , £ m - i ) G P™"1, and Л = (#,£)• We 
take an interval A = [to?*i] c A° a n d denote by h the function h(t)\A. Let I/(A) be the 
space L ( 2 n + m - l ) (A) of elements /i. Let P[A,ft](/i) = z, where z e L™ -1(A), and 

z = F(H,w°{t) + 0(*U(t)) - # ( « A * ) ) ^ r + ^(^°(*)) = , *(*o) = i(*o) = 0. 
rt ft 

^ 2 
As is clear from (3), the domain of P[A, 7Y] is given by the condition TC — £,2(t) > 0| A. 

On this set P[A,H] is a continuous operator. 
Let z G C ^ - ^ A ) . We set G{A,H){z) = 5w, where Sid G £ ^ ( Д ) satisfies on A the 

equation 

(5) Sw Щ?Ш a(w0(t) + 5w(t)) - „(«/>(*)) + A(w°(t) + Sw(t)f-^ 

and the initial condition 

where 
Sw(t0) = w*(Tj,t0) -w°(t0), 

Vo = ZQ(H,z{to)), 
Vi = zi(to), i = l , . . . , m - l , 

Vm-i+i = Zi(t0), г = 1, . . . , m - l . 

The operator G[A,H] is also continuous on its domain. 
Let J[A,H](h) — (5w,z), where 

(6) 
w = G[A:H](z), 

z = P[A,H](h). 

We fix fi > 0 and v > 0 and denote 

И | о о < / ^ , | | ^ | | o o < v W V W 

by L(A,H,fJ,,v) С L(A). In what follows we investigate J[A,H] on L(A,H,fi,v) as 

file:////b/w
file:////B/w
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Part 4. For an arbitrary function /( i) |A, / G Ц^ 1(А), we investigate the solution 
'z = z(i)\A of the Cauchy problem 

(?) z = f{t) + D{w\t))=, *(0) = i(0) = 0. 
rt 

We introduce a change of variable, setting t = to + TVH. Then obviously, r G [0, T], 
where T = A/Vu. Setting z(r) = z(t(r)) and V(r) = -D(w°(t(T))), we get 

(8) i i z = f(t(T))H-V(T)z4 *(0) = 0, ^ = 0 . —?=/ ( i (T ) )W-y(T)2r , s(0) = 0, ^ 
т=0 

By definition, D(w°(t)) — —D°(t), and for the plus-Legendre extremal D°(t) is a positive-
definite matrix for any t G A0. Consequently, V(r) is a positive-definite matrix for any 
r G [0, T], and we can use the results obtained in § 3 for an estimate of 2"(r). 

To get uniform estimates with respect to H, we verify conditions (la) and (lb) in §3. 
Obviously, V{T)~Z • z > Л ~z2 for any r and г, where Л is the smallest eigenvalue of the 
matrix D°(i) on the interval A0. Thus, (la) is satisfied. 

Let Л be the eigenvalue of D°(i) on A0 that is maximal in modulus. Then obviously, 

dV_ 
dr' 

—l 
< A VHzz Vr,z. 

Setting c° = Л |A01, we get from this inequality that 

dV 
dr zz < — zz VT,Z,H. 

The condition (lb) is thus also satisfied. Then, by (6) in §3, 

V M « + | | ) : 

V{r)zdr 

/^-0 <C(\ ,c°)TH \\f\Ur, 

< C(\°,c°)TH\\f\\оо,т. 

Passing from the variable r back to the variable t and taking into account that 
|| • Цоо,*, we get 

D°{t)zz + Hz2 

t 

JD\t)^dt 

<C(A°,c 0 ) |A | \ / f t H/ll 

It will be convenient to use estimates that follow clearly from the given estimates. Setting 
Co = max \ l / v A , 1 \C{\ , c°), we get from the estimates above that 

(9) 

N | o o < C 0 | A | V W | | / | | o o , 

| i | |oo<C0 |A| | | / | |oo, 

< Cb|A| tl/l 

file:////f/Ur
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We underscore that Co does not depend on H, A. 
Part 5. For h G L(A), h = (6>(t),£(i))|A, we set 

ffi,h№ = F(Kw°(t) + 0(t),Z(t)) - D(w°(t))^-. 

Let fi,v > 0 be fixed. Then for sufficiently small 7i we have the estimate 

ЬШАЩы < (b\2 + b2^ + fv2)n+(B1fi2v + B2fiv + Dfiv + D°v3)nV^ 

for any h G L(A,7i,fi,v) in view of (3) and (4). 
Let b = max {b ,6 ,B }. Then for small H 

(10) | / [W,/ i ] ( t ) |L<b(/ i 2 + /i + i;2)W. 

Note that b does not depend on A, H, (J,, v. 
It follows from (10) and (9) that for small H and any h G L(A,H,fi,v) the estimates 

(П) 

\z\\oo < C0b\A\(fi2 + fj, + V2)HVH, 
\z\\oo<C0b\A\{ii2 + fi + v2)n, 

D°(t)=dt <CQb\A\{^+yL + v2)H 

are valid for z = P[A,H](/i). 
Part 6. Suppose that £ satisfies (11) and the initial condition z(to) — z(to) = 0. Let 

us estimate Sw = G[A,H](z). We rewrite equation (5) in the form 

z° („(„.$, (12) Sw=£ (a(w°(t) + Sw) - a(w°(t))) + ( = " 1 J ^ ° W ) zo 

+ A(w°{t)) ^ + (A(«,°(t) + Sw) - A(«,°(*))) ^ 

For small Sw we have the estimates 

(13) 

\a{w°(t))\ < a ° , 

|a(w°(t) + Sw) - a{w°(t))\ < a^Swl 

\A(w°(t) + Sw) - A(w°(t))\ <A\Sw\ VtG A0 

for some constants a0 > 0, a1 > 0, A > 0. Let N(t) = A{w°(t))(D°y1(t). There exist 
constants v° > 0 and U1 > 0 such that |iV(f)| < v° and |7V(£)| < v1 for any t G A0. Let 

t 

Sw(t)=t(t) + N(t) JD°(t)^dt. 
to 



122 A A MILYUTIN 

Substituting in (12) and using the fact that A(w°(t))= = N(t)D°(t) = , we get 

t 

(14) £ = N(t) JD°(t)^dt+ ( | - l) a(w°(t)) 

Г t 

a(w°(t)+m + N(t) JD\t)^=dt^-a{w\t)) 
to 

t 

A(w°(t)+£(t) + N(t) fD°(t)~dt\ -A{w° 

to 

H 

(*)) 
z 

Let q = C0b\A\(fi2 + (i + v2). Then, obviously, 

\t\ < VlqH + a°q2H + a1 |£| + a^qH + A1 qHl^A1 q2Hy/4 W e A. 

Let a = v1q + a°q2 + a1u°q. Then for small H we have 

(15) \i\<a№+H), 

where a does not depend on H. 
We have £(t0) = (5гу(*0) = ^*(^7, *o) - w°(to), where % = H, m = щ = • • • = r/2m-2 = 

0. Consequently, 

(16) |£(*o)l</sW. 

It follows from (15) and (16) that 

(17) Halloo < HjJexp{aA} + H(exp{aA} - l ) . 

Prom (17) we easily get 

(18) HHloo < Halloo + А Й < H(]iexip{aA} + exp{aA} - 1 +17°^). 

Part 7. 

Proposition 1. There exist 8 > 0, // > 0,г> > 0 swc/г £/m£ /or sufficiently small H any 
operator J [A, H]\\A\ — 8 has a fixed point on L(A,H, /i, v). 

Proof. First of all we prove the existence o f (5>0 , /u>0 , i>>0 such that for sufficiently 
small H and any А (Д С A0, | A| = 8) the operator J[A, H] maps L(A, "H, /i, v) into itself. 

It follows from (11) and (18) that for this the following two inequalities suffice: 

С0Ьд(^2 + 11 + у2)<у, 
~pexp{aA} + ехр{аД} — 1 + V°q < ц, 

where q = Cobd(fi2 + /i + v2). From this it is clear that v can be given arbitrarily, 
while /л must satisfy the inequality /Z < /_i. In this case it suffices to take a small <5, and 
the inequalities (19) will be satisfied. 

Suppose that 8, ц, v satisfy (19). Then for sufficiently small H and for any A (|A| = 8) 
the set L(A,7i,/J,,v) is in the domain of the operator J[A,H]. Indeed, let H be small 
enough that 7? > v2lt'. Then H* > £2(i)|AJor any h G L{A,H,fi,v), \A\ = 8. Thus, h 
belongs to the domain of the operator P[A,H]. Since the inequalities (19) are satisfied, 
it follows that \\z\\2 < vH for z = P[A,H](h). Consequently, H > z2{t)\A, and hence 
z belongs to the domain of the operator G[A,H]. This implies that h belongs to the 
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domain of the operator J[A,H]. But h is an arbitrary element of L(A,H,fi,v). This 
proves that J[A,H] is defined on L(A,H,fi,v). 

It follows from the inequalities (11), (17), and (18) that the operator J[A,H] maps 
L(A,7i,/J,,v) into a compact subset, namely, into the subset of the elements Sw, 'z for 
which 115w||oo, ||i||oo are uniformly bounded by the product of H and a constant depend­
ing on fi,v and the coefficients b, a, u°. Let L(A,H, (A,v) С L(A,H,/i, v), \\8w\\ < 1, and 
| |i | | < 1. Obviously, L(A,H, fi,v) is a compact convex set, and for small H it is mapped 
into itself by the operator J[A,H] for any A||A| = 6. The statement of the proposition 
follows from this. • 

Part 8. Here we conclude the proof of the theorem. 
Let 5, fi, v be such that for sufficiently small H and any A| |A| = 6 the operator J[A, TL] 

has a fixed point belonging to L(A,H,fi,v). We choose a closed interval А С A0 with 
|A| = 6. Let 5wn, z:n be a fixed point of J[A,H] belonging to L(A,H,/i,v). We set 
wn(t) = w°(t) + dwn(t)\A. Then it is not hard to see that wn, z^1 form a solution of 
the extended system (2.11). We show that for any small H the solution wn, z;n satisfies 
the conditions of Proposition 2 in § 2. By the definition of the operator J[A, H], we have 
Swn(t0) = w*(r),to)—w°(t0), where ту = (H,0,... ,0). Consequently, wn(t0) — w*(r),t0). 
According to the definition of w*(r),t) (part 1), this implies that 

(20) 

Consequently, 

°zo{w1R(to))=H1 

°zi{wR(t0)) = 0, г = 1,. 

Zi(vF(to))=0, г = 1,. 

.,m-l, 

. ,m — 1. 

H(wn(t0))=H, 

(21) z0(w"fo)) = %CH,z"(to)), 

z(vF(to)) = z"{to). 

Thus, the conditions 1), 2), and 3) of Proposition 2 in §2 are satisfied. By (7) in §2, 

,H(+~\\ . — T ^ 1 Z. (.„Hi dzj 

dt 
z0(wH(t0)) о TR y-^ zk(wn(t0)) л щ 

= ^JTW77^Z^W (*o))+ У, <u, 77^ ч ^ (*o) ri,r fc(a;n(to)). 
wn(to) H(wn(t0)) ^ H(wn(t0)) 

Then it follows from (21) that 

л° _ 
= 0 = zn(t0). 

dz 
~dt l(to) 

Thus, condition 4) of Proposition 2 in § 2 is also satisfied. Accordingly, all the conditions 
of that proposition are satisfied. 

In view of this proposition, wn is a solution of the Hamiltonian system (6) of §2 on 
A, and hence is a nonsingular extremal, and the following conditions hold: 

n{w4(t)) = % 

(22) S o ( ^ ( t ) ) = ^ ( W , ^ ( t ) ) , 
°z{vJR{t)) = z7H{t) W e A. 


